shell=shell, diferentes niveles corresponden a diferentes números cuánticos principales, lo que requiere n>0
El número cuántico principal n=1,2,3,4,5,6 Los niveles de... se registran como capas K L M N O P...
subshell=subshell Una capa con un número cuántico principal n tiene l subcapas y sus números cuánticos angulares son l=0. 1), las subcapas que satisfacen l número cuántico angular l=0,1,2,3,4... se registran respectivamente como subcapas s p d f g..., y Junto con el número cuántico principal n, se registra como ns np nd nf ng... Por ejemplo, la capa K tiene solo una subcapa 1, la capa L tiene dos subcapas 2 y 2p, y la capa M tiene tres subcapas 3s , 3p, 3d... orbital=orbital, la subcapa con número cuántico angular l tiene (2l+1) orbitales, y su cuántico magnético los números son m=-l,-l+1 respectivamente ...-1,0,+1,+2...+l-1,+l ns la subcapa tiene solo una. la órbita de la subcapa np tiene tres órbitas, generalmente escritas como np_x, np_y, np_z, la subcapa nd tiene cinco orbitales, que generalmente se registran como nd_z^2, nd_xz, nd_yz, nd_xy, nd_x^2-y^2; p> El concepto anterior proviene de resolver la ecuación de la función de onda del átomo de hidrógeno, la función de onda φ=φ(n,l,m)=R(n)Θ(l)Φ(m) se puede obtener usando la separación método de variables. Contiene tres parámetros enteros, a saber, el número cuántico principal n, el número cuántico angular l y el campo magnético. El número cuántico m determina la energía total, el momento angular total y el tercer componente del momento angular. electrones fuera del átomo de hidrógeno respectivamente: Energía total E=E(n)=E0/n^2, átomo de hidrógeno E0=-13,6eV, donde n es el número cuántico principal; Momento angular total L=L(l)=L0*sqrt[l(l+1)], L0 es la unidad del átomo de hidrógeno. Momento angular orbital = γ0*μ0, donde l es el número cuántico angular; El componente del eje z del momento angular Lz=m*L0, donde m es el número cuántico magnético. La fórmula analítica específica de la función de onda φ (n, l, m) de cada número cuántico, el método de extender la función de onda de los átomos de hidrógeno a iones similares al hidrógeno y otros átomos, y la de -simplificación de estados degenerados Y puedes consultar cualquier libro de mecánica cuántica o química cuántica Además, cualquier órbita también puede acomodar dos electrones, por lo que el concepto de espín del electrón y el número cuántico de espín S= Se introducen ±1/2. Los dos valores corresponden a los dos electrones en cada órbita.