Pregúntame algún conocimiento sobre ecuaciones diferenciales en cursos universitarios de física.

"dt" es un "pequeño cambio" en el tiempo.

"dV" es el "pequeño cambio" en la velocidad.

"dV/dt" es la "tasa de cambio de la velocidad con el tiempo", es decir, la aceleración. (Diferencial, también llamado "derivada de la velocidad v")

Escribe la expresión: a = dv/dt - (1)

x representa el desplazamiento, "dX/dt" es el “tasa de cambio de desplazamiento con el tiempo”, es decir, velocidad.

Escribe la expresión: v = dx/dt - (2)

Mete (1) en (2) para obtener: a = (d ^ 2x)/(dt ^ 2 )——Esta es la "segunda derivada" de "desplazamiento versus tiempo".

En realidad, (d 2 v)/(dt 2) es el resultado de "dv/dt (aceleración)" diferenciando el tiempo nuevamente.

Después de leer el suplemento, permítanme decir unas palabras:

D(dV/dt)/dt distingue una vez más "dV/dt" del tiempo. -También se puede decir que es “la segunda derivada de la velocidad v con respecto al tiempo t”. Las "reglas de cálculo" aquí son el proceso de "derivación" y nada más.