Problemas de Física 100 Conferencia

No. 1: El tren tiene 250 m de largo y el túnel tiene 1250 m de largo. ¿Cuánto tiempo le toma a este tren pasar por este túnel a una velocidad de 25 metros/segundo?

Cuando un tren pasa por un túnel, comienza desde la parte delantera del tren que ingresa al túnel hasta que la parte trasera del tren sale del túnel, por lo que la distancia real que pasa el tren = 1250 m + 250 m = 1500 m, y el tiempo requerido = 1500M/25M/S=60 segundos.

Pregunta 2: La gravedad de un objeto es 490 N. ¿Cuál es la masa de este objeto?

m = g/g = 490 N/9,8 N/kg = 50 kg

Tercero: La masa de un pino con un volumen de 50 dm^3 es 20 kg. ¿Cuál es la densidad de esta madera de pino seca?

Densidad = masa/volumen = 20kg/50m3 decímetro = 20kg/0,05m3 = 400kg/m3.

El cuarto método: sumerge el bloque de hierro en una taza llena de alcohol y 100 g de alcohol se desbordan de la taza. Si se sumerge un bloque de hierro en un vaso lleno de agua, ¿cuál es la masa de agua que se escapa del vaso?

(Parece que la densidad del alcohol es 0,8 /m3]*[1,0x 10 3kg/m3]= 100g *[1]

上篇: Los pros y los contras de estudiar en el extranjero 下篇: Documento de superusuarioInvestigación sobre el flujo de potencia óptimo multiobjetivo del sistema de energía considerando la estabilidad del voltaje estático (1) Capítulo 5 Flujo de potencia óptimo multiobjetivo del sistema de energía considerando la estabilidad del voltaje estático 5.1 Introducción Aunque el voltaje la estabilidad es esencial Lo anterior es un problema dinámico, pero la mayoría de los apagones de los sistemas de energía en el mundo son causados ​​por la destrucción de las condiciones operativas del flujo de energía estática. Sin embargo, los procesos dinámicos posteriores exacerbaron el colapso del sistema. En la planificación de la energía reactiva, el método de descomposición del valor singular se utiliza primero para identificar barras colectoras débiles que son sensibles a la estabilidad, y luego se instalan dispositivos de compensación de potencia reactiva en estas barras colectoras, lo que no solo tiene en cuenta la estabilidad del voltaje y reduce las pérdidas del sistema, sino también reduce el tiempo de operación. Este capítulo primero identifica los nodos débiles en el sistema a través del análisis de la estructura característica y determina la ubicación de instalación del dispositivo de compensación de potencia reactiva. Luego, el índice de estabilidad de voltaje estático se agrega a la función objetivo del problema de flujo de potencia óptimo para determinar la potencia mínima. optimización del costo de generación y capacidad mínima de compensación de potencia reactiva y maximización del margen de estabilidad de voltaje estático, construir un modelo de flujo de potencia óptimo multiobjetivo y combinar la teoría de conjuntos difusos y el algoritmo de búsqueda tabú para resolver el nuevo modelo. La viabilidad de este método se verifica mediante cálculos en un sistema IEEE de 14 nodos. La mayor ventaja de este método es que puede tener en cuenta tanto la estabilidad del voltaje como la economía del sistema. 5.2 Modelo de flujo de potencia óptimo multiobjetivo El problema tradicional de flujo de potencia multiobjetivo se puede describir de forma matemática concisa como sigue: [] 1,2 min =(), (), ()...()0()0 TNF F (5.1), donde Es decir, la ecuación básica de flujo de potencia; G (x) ≤ 0 es una restricción de desigualdad. 5.2.1 Función objetivo La función objetivo puede ser cualquier función significativa. Teniendo en cuenta la seguridad y la economía del sistema eléctrico al mismo tiempo, este artículo utilizará las siguientes tres funciones objetivo: (1) Costo mínimo de generación de energía 21 min () ()GII GII GII NF X ABP CP∑=∑. Ia, ib e ic son los coeficientes característicos de generación de energía del nodo I; GiP es la potencia de salida activa del nodo generador I (2) La capacidad mínima de compensación de potencia reactiva es 2 min () Ci Cii Nf x s Q∑=∑ (5.3) donde CiQ es la instalación. La capacidad del dispositivo de compensación de potencia reactiva en el nodo I Is es una variable de decisión 0-1; Si el nodo I está instalado con un dispositivo de compensación de potencia reactiva, es 1is=, de lo contrario es 0is=. El valor de is se determina mediante el método de análisis de estructura característica. CN es el conjunto de todos los nodos equipados con dispositivos de compensación de potencia reactiva. (3) Maximizar el margen de estabilidad del voltaje estático 3 0max()cof x=λ? λ(5.4), donde coλ y 0λ son el nivel de carga en el momento del colapso de tensión y el nivel de carga en el estado operativo actual del sistema, respectivamente.