x(n)=∑[ntan(I/n)]/(n^ 2+n)= n/(n+1)∑tan(I/n)]*(1/n)
y(n)=∑[ntan(I/n)]/(n ^2)=∑tan(I/n)]*(1/n)
Entonces x(n) ≤ u(n) ≤ y(n)
Límite ∑tan (i/n)] * (1/n), n-& gt;∞
= ∫tanx dx =-ln(cos1) Integral definida: el rango de valores de x es de 0 a 1.
∫lim x(n)= lim y(n)=-ln(cos 1), criterio de pellizco,
∴ Lim u(n)= - ln(cos1)